Package: predieval 0.1.2

Orestis Efthimiou

predieval: Assessing Performance of Prediction Models for Predicting Patient-Level Treatment Benefit

Methods for assessing the performance of a prediction model with respect to identifying patient-level treatment benefit. All methods are applicable for continuous and binary outcomes, and for any type of statistical or machine-learning prediction model as long as it uses baseline covariates to predict outcomes under treatment and control.

Authors:Orestis Efthimiou

predieval_0.1.2.tar.gz
predieval_0.1.2.zip(r-4.5)predieval_0.1.2.zip(r-4.4)predieval_0.1.2.zip(r-4.3)
predieval_0.1.2.tgz(r-4.4-any)predieval_0.1.2.tgz(r-4.3-any)
predieval_0.1.2.tar.gz(r-4.5-noble)predieval_0.1.2.tar.gz(r-4.4-noble)
predieval_0.1.2.tgz(r-4.4-emscripten)predieval_0.1.2.tgz(r-4.3-emscripten)
predieval.pdf |predieval.html
predieval/json (API)
NEWS

# Install 'predieval' in R:
install.packages('predieval', repos = c('https://esm-ispm-unibe-ch.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/esm-ispm-unibe-ch/predieval/issues

On CRAN:

2.00 score 1 scripts 130 downloads 6 exports 66 dependencies

Last updated 2 years agofrom:225b2573be. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-winOKNov 12 2024
R-4.5-linuxOKNov 12 2024
R-4.4-winOKNov 12 2024
R-4.4-macOKNov 12 2024
R-4.3-winOKNov 12 2024
R-4.3-macOKNov 12 2024

Exports:bencalibrexpitlogitpredievalsimbinarysimcont

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercolorspacedata.tabledigestevaluatefansifarverfastmapfontawesomeforeignFormulafsggplot2gluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatchingMatrixmemoisemgcvmimemunsellnlmennetpillarpkgconfigR6rappdirsRColorBrewerrlangrmarkdownrpartrstudioapisassscalesstringistringrtibbletinytexutf8vctrsviridisviridisLitewithrxfunyaml